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+ H direct annihilation above the positronium formation threshold
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A long-standing problem with the solution of the Schrödinger equation has been its inability to account for
the electron-positron annihilation in positron hydrogen scattering above the positronium formation threshold.
This letter shows that this problem has been resolved by the use of the modified Faddeev equations. A number
of e−e+ annihilation cross sections in the energy gap betweenPs(1s) andH(n = 2) thresholds are reported
for both the positron plus hydrogen incoming channel as wellas the proton plus positronium incoming channel.
However the indirect annihilation cross sections after formation of the positronium themselves are well known,
they will not be included in this report.

PACS numbers: 36.10.Dr, 34.90.+q

When the possibility ofe+e− annihilation in flight is ne-
glected thee+ + H collision in the energy region between
Ps(1s) andH(n = 2) thresholds can have only two open
channels. They are: the elastic channel and the rearrangement
channel, where thee+ capture the electron fromH and form
a positronium inPs(1s). Under this assumption annihilation
can occur only after the formation of the positronium. The
lifetime of thePs(1s) is known to depend on the total spin
S. The singlet para-Ps, 1S0, decays into2γ rays with a life-
time τ ≈ 0.13ns. The triplet ortho-Ps, 3S1, decay into3γ
rays withτ ≈ 140ns [1]. These well known annihilation will
not be included in this report. We calculate thee+e− direct
annihilation using the standard relation [2]

σan = πr20(c/v)Zeff, (1)

r0 = e2/mec
2,Zeff is the annihilation coefficient defined by

Zeff = 〈Ψ|δ(~r)Ψ〉, (2)

~r is the distance betweene+e− in the three-body wave func-
tion Ψ. The calculation ofe+e− in flight thus compensate for
the shortcoming of the quantum three-body calculation where
the annihilation channel is closed.

The modified Faddeev equation [3, 4] explicitly separates
the three-body wave function into the direct channel and the
rearrangement channel

Ψ = Ψ1(~x1, ~y1) + Ψ2(~x2, ~y2). (3)

Here~xα, ~yα, α = 1, 2 are the corresponding mass-scaled Ja-
cobi vectors [4] defined by

~xα = τα(~rβ − ~rγ) (4)

~yα = µα

(

~rα −
mβ~rβ +mγ~rγ
mβ +mγ

)

,

where(αβγ) are cyclic permutations of(123),mα and~rα are
the particle mass and position vectors,

τα =

√

2mβmγ

mβ +mγ
, µα =

√

2mα

(

1 −
mα

M

)

, (5)
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FIG. 1: Jacobi vectors in thee+
− H system.

andM = mα +mβ +mγ .
The Jacobi vectors corresponding to different channels are

related by the orthogonal transformation

(

~xα

~yα

)

=

(

Cβα Sβα

−Sβα Cβα

) (

~xβ

~yβ

)

(6)

with

Cβα = −

[

mβmα

(M −mβ)(M −mα)

]1/2

and

Sβα = (−)β−αsgn(α− β)(1 − C2
βα)1/2.

In this calculation we used the Jacobi vectors given in Fig. 1.
Using bipolar expansion we have

ψα(xα,yα) =

∞
∑

L=0

L
∑

M=−L

∑

~l+~λ=~L

ψL
αlλ

(xα, yα)

xαyα
Y LM

lλ (x̂α, ŷα)

(7)
whereα = 1, 2 and the bipolar basis is

Y LM
lλ (x̂α, ŷα) =

∑

ml+mλ=M

〈lmlλmλ|LM〉Y ml

l (x̂α)Y mλ

λ (ŷα).

HereL is the total angular momentum of the three-body sys-
tem andl, λ are the relative angular momenta corresponding
to the Jacobi vectors~xα and~yα, respectively. The modified
Faddeev equations for angular momentumL are given by
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[

H
(α)
lλ + Vα − E

]

ψL
αlλ(xα, yα) +

∑

~l′+~λ′

WαL
lλ,l′λ′ψL

αl′λ′(xα, yα) = −V (s)
α

∑

~l′+~λ′

(hαβL
lλ,l′λ′ψ

L
βl′λ′)(xα, yα), (8)

where

H
(α)
lλ = −∂2

xα
− ∂2

yα
+
l(l + 1)

x2
α

+
λ(λ+ 1)

y2
α

,

Vα is the Coulomb potential,

WαL
lλ,l′λ′ = 〈Y LM

lλ (x̂α, ŷα)|V̄α|Y
LM
l′λ′ (x̂α, ŷα)〉,

V̄α = V3(x3) + V
(l)
β (xβ , yβ)

V (s)
α = Vαζα(xα, yα)

V (l)
α = Vα(1 − ζα(xα, yα)),

ζ(x, y)) = 2

{

1 + exp

[

(x/x0)
ν

1 + y/y0

]}

−1

,

x0, y0, ν > 2 are the Merkuriev cut-off parameters, and

(hαβL
lλ,l′λ′ψ

L
βl′λ′)(xα, yα) =

∫ 1

−1

dzα (hαβL
lλ,l′λ′(xα, yα, zα)ψL

βl′λ′(xβ , yβ)

where

hαβL
lλ,l′λ′(xα, yα, zα) =

(−)L+λ′

2

(l+λ+l′+λ′)/2
∑

k=0

(−)k(2k + 1)Pk(zα)
∑

l1+l2=l′

∑

λ1+λ2=λ′

(2l′ + 1)(2λ′ + 1)

×
√

(2l + 1)(2λ+ 1)

(

2l′!2λ′!

2l1!2l2!2λ1!2λ2!

)1/2

(−)λ1(cβα)l2+λ1(sβα)l1+λ2
xl2+λ2+1

α yl1+λ1+1
α

xl′+1
β yλ′+1

β

×
∑

l′′λ′′

(2l′′ + 1)(2λ′′ + 1)

(

k l′′ l
0 0 0

) (

k λ′′ λ
0 0 0

)(

l′′ λ2 l2
0 0 0

) (

λ′′ λ1 l1
0 0 0

)

×

(

l λ L
λ′′ l′′ k

)





λ1 λ2 λ′

l1 l2 l′

λ′′ l′′ L



 .

The componentsψαlλ(xα, yα) in (8) are further expanded in
terms of quintic Hermite polynomial splines for each of the
variablesxα, yα. The wave functions are solved and normal-
ized according to the asymptotic wave function [4, 5]

ψ(σ) ∼ fσ +

open channels
∑

σ′=1

K̃σ′σf
σ′

. (9)

In the Ore gap, thef ’s are the product of the standard spher-
ical Bessel functions and the radial part of the bound-state
hydrogenic wave functions.̃Kσ′σ differs from the standard
K-matrix elementsKσ′σ by only a kinematic factor.

According to Fig. 1 and Eq. (2) annihilation takes place
when~x2 = 0. However, it is clear that the integrals in (2)
diverge wheneverψ2(~x2, ~y2) is involved. Thus, all previous
calculations ofZeff using (2) were limited to energies below

the positronium formation threshold. Only recently, Ref. [6]
used an imaginary absorption potential to replace the dynam-
ics ofe−e+ annihilation. In solving the Schrödinger equation
they found the annihilation cross section below thePs(1s)
threshold joins smoothly to the positronium formation cross
section just above the threshold. But this imaginary potential
is too week to represent the annihilation dynamics above and
away from thePs(1s) threshold. According to this model,
above thePs(1s) threshold only indirect annihilation after
formation is possible. Ref. [7] renormalized the singularity in
(2) near thePs(1s) threshold using the physical2γ-lifetime
of Ps(1s). They also showed the smooth transition of the
annihilation cross section acrossPs(1s) threshold. Theirs is
essentially a threshold law, valid only near the threshold.Nev-
ertheless, we will show that the integral

Zinf = 〈ψ1|δ(~r2|ψ1〉 (10)
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is well defined and exists even above thePs(1s) threshold. In
principle, the divergent part of (2) must be renormalized tothe
physical indirect annihilation cross section after the positron-
ium is formed. This part is related to the positronium for-
mation cross sections that we have already reported in [4, 8].
This report is devoted to the calculation of (10). To avoid
confusion, we define (10) to be the annihilation coefficient
of e−e+ annihilation in flight. Thus (10) truly represents the

missing open channel, the neglected dynamics in the quantum
mechanical solution (8) of thee+ + H system or othere++
atom systems.

At ~x2 = 0, Eq. (6) gives

~y1 = −C21/S21~x1, ~y2 = −1/S21~x1,

and

Y LM
lλ (x̂1, ŷ1)|~x2=0 =

√

(2l + 1)(2λ+ 1)

4π

(

l λ L
0 0 0

)

Y M
L (ŷ2),

whereYM
L (ŷ2) is the spherical harmonic. Then,

Zinf =

∫

|Ψ1(~x1,−C21/S21~x1)|
2y2

2dy2dΩy2
(11)

= 4π cos2 δ

∞
∑

L=0

(2L+ 1)
∑

lλ

∫

dx1
1

|S21|

[

1

|C21|x1

√

(2l + 1)(2λ+ 1)

4π

(

l λ L
0 0 0

)

Ψ1
L
lλ(x1,−C21/S21x1)

]2

,

whereδ is the phase shift of the scattering problem as a result
of the normalization according to the asymptotic wave func-
tion (9).

When the incoming channel ise+ +H ,ψ2 is solely respon-
sible for all positronium formation cross section. Whenp+Ps
is the incoming channel,ψ1 is responsible for all the hydrogen
formation cross section . In either case, annihilation in flight
calculated using (10) exists. ThusZ1inf andZ2inf are calcu-
lated for these two cases respectively. In Table I we present
theL = 0 contribution to (11) for a number ofk values in the
Ore gap. Table II gives the corresponding annihilation cross
sections. The pointk = 0.71a−1

0 is just above the positronium
formation threshold, where the pointk = 0.8612a−1

0 is near a
Feshbach resonance. Even though theS-state annihilation is
relatively smooth in the Ore gap, the sudden increase near a
Feshbach resonance is quite noticeable.

All calculations were carried out with a cut-off radii
ymax
1 = 125a0, ymax

2 = 228a0, except near the Feshbach
resonance whereymax

1 = 150a0, ymax
2 = 250a0 was used.

Zinf is very sensitive to the cut-off radiiymax
1 andymax

2 es-
pecially when the energies are close to either the lower or up-
per thresholds. Converged results are obtained only for suffi-
ciently largeymax

1 andymax
2 values. This is demonstrated in

Table III for the casek = 0.71, thePs(1s) formation thresh-
old is located atk = 0.70653. In contrast, the scattering cross
sections were well converged at a cut-off radii of less then
100a0 [4, 8], which were cross-checked by another method
that solves the Faddeev-Merkuriev integral equations by us-
ing the Coulomb-Sturmian separable expansion approach [9]
and by numerous previous calculations using the Schrödinger
equation.

Calculations with considerable large cut-off radii require
substantial computer resources, even for relatively low en-
ergies such as that used in the present calculations where
all energies are inside the Ore gap betweenH(n = 2) and
Ps(n = 1) thresholds. The three-body wave functions were
obtained by using a quintic spline collocation procedure onthe
Jacobi coordinates [4, 5]. The dimension of the converged cal-
culations have reached175000. Calculations at much higher
energies and near Feshbach resonances are quite demanding
in terms of computer resources. Yet such calculations are im-
portant, for example in the creating of the antihydrogen and
the studying of its spectroscopy. In the formation of antihy-
drogen using the process̄p+ Ps→ H̄ + e−, e−e+ annihila-
tion in the outgoing channel can be an important consideration
when excited states are involved, where numerous Feshbach
resonance exist.

Beyond the likely practical applications in antihydrogen re-
search, this calculation represents the first breakthroughof a
long-standing problem in positron-atom quantum scattering,
i.e. its inability to account for thee−e+ annihilation above the
positronium formation threshold. Using Schrödinger equa-
tion, the calculations in [6] are valid only in the immedi-
ate vicinity of the positronium formation threshold atk =
0.70653a−1

0 . The modified Faddeev equations enable the ex-
plicit separation of thee+ +H and thep+ Ps channels. The
annihilation cross sections in thee+ +H channel are well de-
fined by (10). The singularity involving thep + Ps channels
are renormalized to the indirect annihilation which can be cal-
culated using the known physical annihilation cross sections
of the positronium themselves and the respective positronium
formation cross sections obtained in the solution of (8). Thus
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TABLE I: S-state annihilation parameters in the Ore gap. The wave
numberk’s are given ina−1

0 units, wherea0 is the Bohr radius.

k 0.71 0.75 0.80 0.85 0.8608 0.8612
Z1 0.630 0.592 0.531 0.478 0.446 0.403
Z2 1.699 1.417 0.749 1.055 1.367 7.632

TABLE II: S-state annihilation cross sections in the Ore gap. The
σ’s are given in10−6πa2

0 units.

k 0.71 0.75 0.80 0.85 0.8608 0.8612
σ1 0.3446 0.3067 0.2578 0.2183 0.2010 0.1819
σ2 0.9293 0.7337 0.3636 0.4820 0.6167 3.442

a quantum mechanical theory which includes the annihilation
channel is obtained.

This work has been supported by the NSF Grant No.Phy-
0243740 and by PSC and SDSC supercomputing centers un-
der grant No. MCA96N011P.

TABLE III: S-state annihilation parameters atk = 0.71 with 6 pairs
of cut-off radii.

ymax
1 50 50 55 50 100 125

ymax
2 120 150 174 180 228 228

Z1 0.541 0.574 0.535 0.537 0.633 0.630
Z2 0.406 101.8 2.128 0.471 1.766 1.699
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